PoCRA Water Budget

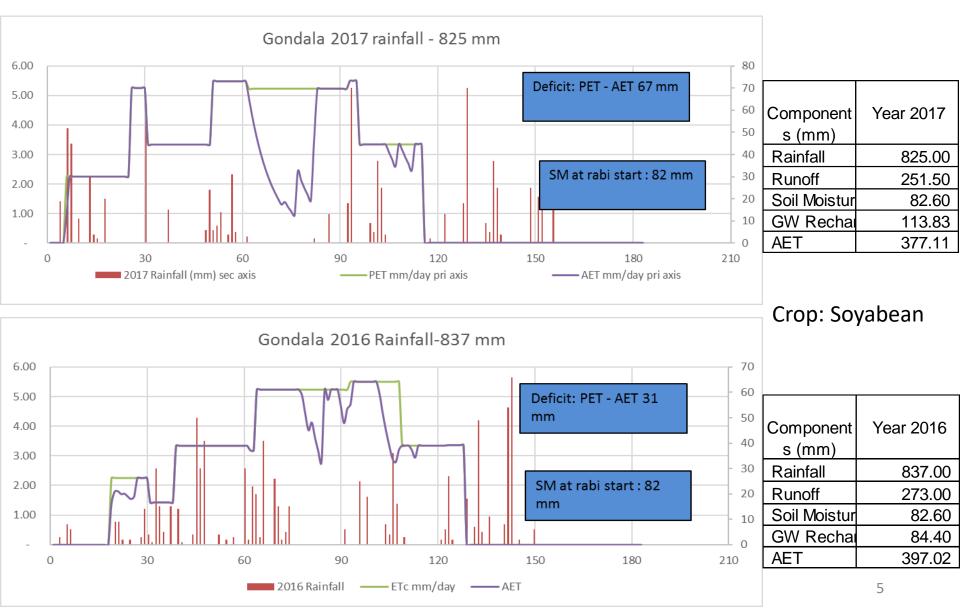
Presentation to the Technical Advisory Committee

POCRA Team, IIT Bombay 6th Feb 2018

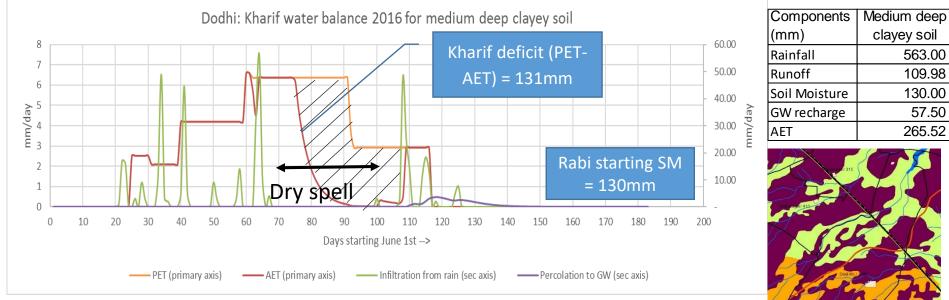
Outline

- 1. Climate resilience and need for water budget
- 2. Water balance: Technical details
- 3. Water budget exercise: Methodology adopted
- 4. Example

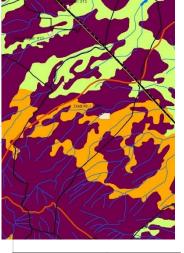
Ghusar cluster: Farmer yields surveys


Crop	Farmer No	Unirrigated	Irrigated
Cotton (Ajit 155)	1. w/FP	7Q/acre (in 2017)	8Q/acre (one irr in 2016)
	2. w/bore	3-5Q	8Q (July 2017 protective irr)
	3.		12Q (1 kharif protective + 1 in Nov 2017)
Harbhara (Vijaya)	1. w/ FP	5Q (2016)	6Q (one irrigation)
	2.	2-3Q	6-7Q (post mung; one irr Oct 2017)
	3. (w/ bore)	5-6Q (after mung, no irrigation)	(after soya) Pre-water before sowing + 2 more in Nov and Dec: 6-7Q/acre
(Jackie)	4.	6-7Q (post mung)	10Q (twice irrigated post mung)
Soyabean	1.	Crop failed (2017)	
	2. (w/bore)		5Q (1 in Oct 2017) full yield ~12Q w/2 more water
	3.	1.5Q (2017)	
Tur	1.	1.5Q/acre	5Q

Ghusar cluster: Farmer yields surveys


Сгор	Farmer No	Unirrigated	Irrigated
Cotton	1. w/FP	7Q/acre (in 2017)	8Q/acre (one irr in 2016)
	t yield curve (based on 20	015-2017 surveys)	
25			8Q (July 2017 protective irr)
20 20			12Q (1 kharif protective + 1 in Nov 2017)
10 5			6Q (one irrigation)
0 - 0.2	0.4 0.6 % of required watering given (0.8 1.0 1.2 (based on soil type)	6-7Q (post mung; one irr Oct 2017)
	3. (w/ bore)	5-6Q (after mun; no irrigation)	Rabi onion yield curve (based on 2015-2017 surveys)
(Jackie)	4.	6-7Q (post mun _ɛ	250
Soyabean	1.	Crop failed (2017	
	2. (w/bore)	č	100 50
	3.	1.5Q (2017)	
Tur	1.	1.5Q/acre	% of required watering given (based on soil type)

How do we stabilize yields?


Kharif dry spell impact

Kharif dry spells and soil type

Dodhi: Kharif water balance 2016 for shallow gravelly sandy loam soil 60.00 8 Kharif deficit (PET-7 50.00 AET) = 215mm 6 40.00 5 4 3 Ap/mm 30.00 20.00 **Rabi starting SM** 2 10.00 = 40mm 1 0 20 40 60 80 100 120 140 0 160 180 200 Days from June 1st --> PET (primary axis) AET (primary axis) Infiltration (sec axis) Percolation to GW (sec axis)

109.98

130.00

57.50

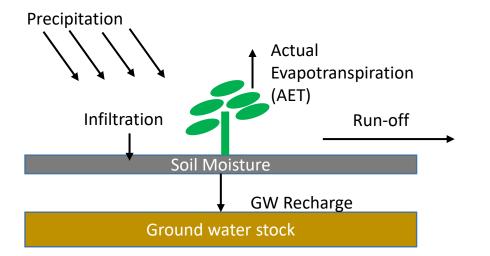
265.52

Components	Shallow
(mm)	sandy
Rainfall	563.00
Runoff	195.43
Soil Moisture	40.00
GW recharge	145.84
AET	181.73

Questions faced by farmers

- How much extra irrigation (mm) should a farmer be prepared to give in Kharif?
- How much of this is available currently and where will the remaining come from?
- What interventions should be made for this?
- Is the Rabi crop secure?

- Impact of dry spells and excess rainfall depends crucially on local parameters
- A model to account for rainfall into its components: soil moisture, GW recharge, run-off and crop ET


Water Balance Focus Areas

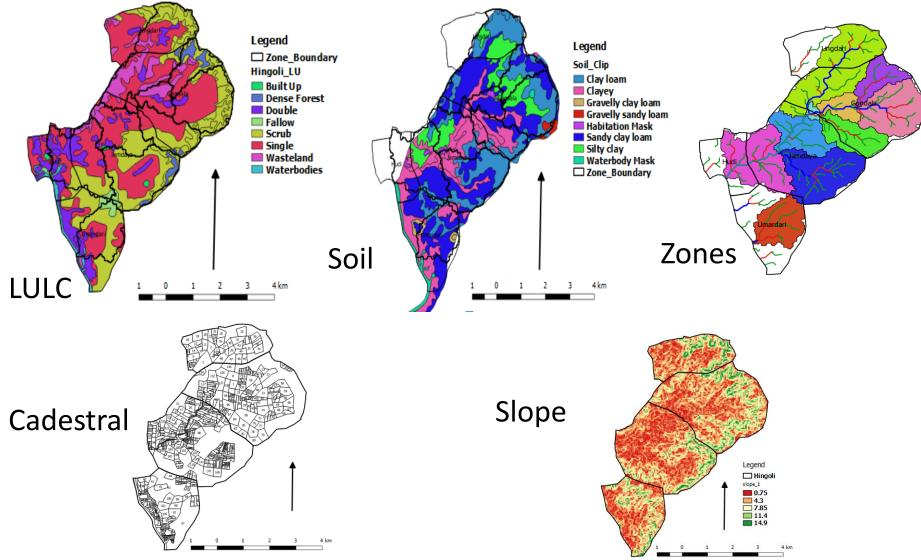
- Kharif dry spell planning:
 - Identification of farmers most vulnerable in dry spells *where*
 - Quantification of monsoon protective irrigation required
 - Computation of run-off and monsoon deficit how much
- Post monsoon planning:
 - Quantification of soil moisture and ground water available for post-monsoon crops (long Kharif, Rabi, annual crops) supply
 - Current post-monsoon crop water requirement *demand*
 - Post monsoon deficit
- Guidance on structures based on above
 - Planning at zone (100-250ha) level, using principles of watershed
- Advisory on cropping pattern and land use

Outline

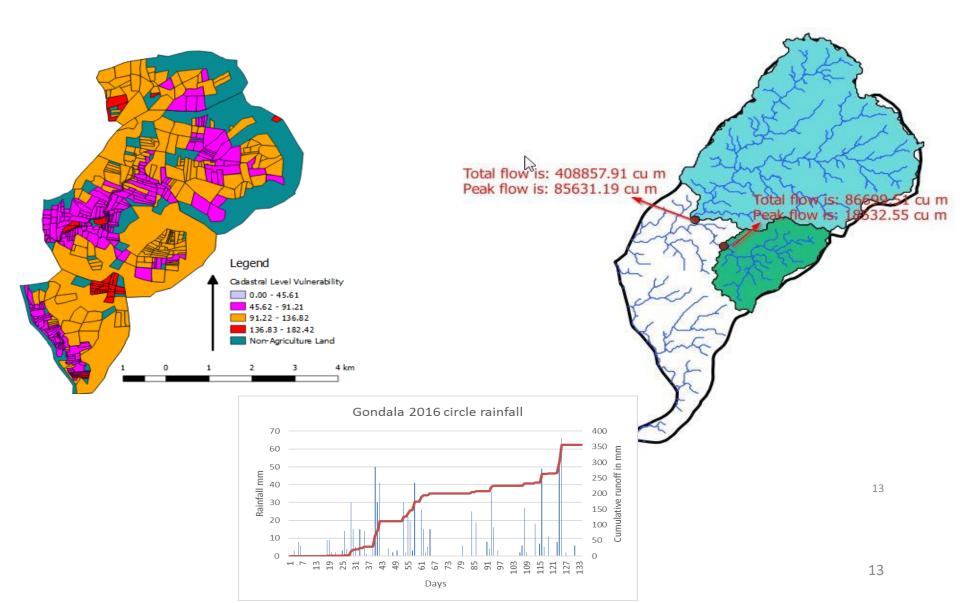
- 1. Climate resilience and need for water budget
- 2. Water balance: Technical details
- 3. Water budget exercise: Methodology adopted
- 4. Example

Point level Water balance

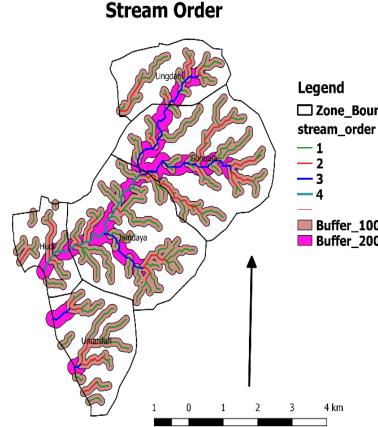
Model Validation against SWAT and ongoing field observations


Component	Method (Reference)	Data source/ Ref
Rainfall	Input	Maharain.gov.in
run-off, infiltration	SWAT method based on SCS-Curve number adjusted for slope	SWAT theory
Potential crop ET (PET)	Modified Penman method	ETO: WALMI, Kc: FAO
Actual crop ET (AET)	FAO methodology	Soil properties: FC, WP, Crop root depth
GW recharge	SWAT methodology	Soil conductivity function of soil texture input
Soil moisture	Mass balance	

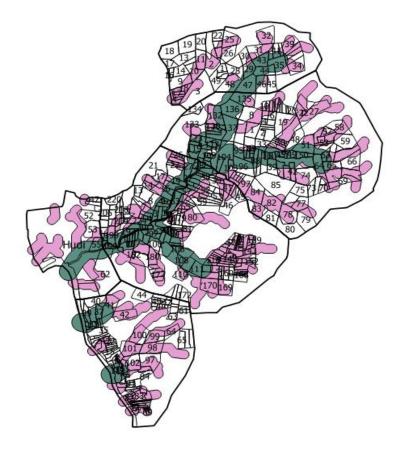
Output: Gondala Monsoon end balance


						Soil	
	PET	AET	Monsoon	GW		Moisture	Post
	Monsoo	Monsoon	Deficit(PE	Recharge in	Runoff in	Monsoon	Monsoon
Area	n End	End	T-AET)	Monsoon	Monsoon	end	PET
	453.8	345.9	107.9	29.1	251.4	81.8	0.0
	449.5	361.7	87.8	29.1	273.1	44.6	304.6
	276.0	194.9	81.0	81.7	339.2	92.1	0.0
	415.5	338.2	77.2	32.3	286.9	51.0	185.1
	517.9	258.8	68.9	53.7	328.6	67.6	0.0
	634.0	298.5	43.6	51.5	304.6	54.4	0.0
	778.9	368.6	102.1	54.3	250.6	35.5	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	250.0
		Area Monsoo n End 453.8 449.5 276.0 415.5 517.9 634.0 778.9	Area Monsoo Monsoon n End End 453.8 345.9 449.5 361.7 276.0 194.9 415.5 338.2 517.9 258.8 634.0 298.5 778.9 368.6	Area Monsoo Monsoo Deficit(PE Area n End End T-AET) 453.8 345.9 107.9 449.5 361.7 87.8 276.0 194.9 81.0 415.5 338.2 77.2 517.9 258.8 68.9 634.0 298.5 43.6 778.9 368.6 102.1	Monsoo Monsoo Deficit(PE Recharge in Area n End End T-AET) Monsoon 453.8 345.9 107.9 29.1 449.5 361.7 87.8 29.1 276.0 194.9 81.0 81.7 415.5 338.2 77.2 32.3 517.9 258.8 68.9 53.7 634.0 298.5 43.6 51.5 778.9 368.6 102.1 54.3	PET AET Monsoon GW Recharge in Runoff in Monsoo n End End T-AET) Monsoon Monsoon Monsoon 453.8 345.9 107.9 29.1 251.4 449.5 361.7 87.8 29.1 273.1 276.0 194.9 81.0 81.7 339.2 415.5 338.2 77.2 32.3 286.9 517.9 258.8 68.9 53.7 328.6 634.0 298.5 43.6 51.5 304.6 778.9 368.6 102.1 54.3 250.6	AreaMonsooMonsoonDeficit(PE T-AET)Recharge in Runoff in Monsoon MonsoonMonsoon end453.8345.9107.929.1251.481.8449.5361.787.829.1273.144.6276.0194.981.081.7339.292.1415.5338.277.232.3286.951.0517.9258.868.953.7328.667.6634.0298.543.651.5304.654.4778.9368.6102.154.3250.635.5

Area for individual crops to come from field assessment


Example: Gondala cluster inputs

Output 1: Monsoon vulnerability maps

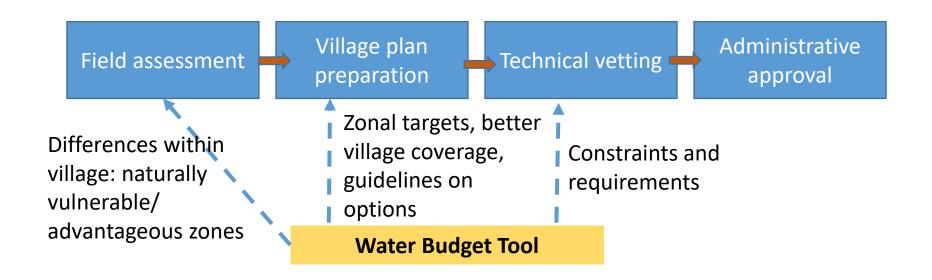


Output 2: Stream proximity map

Zone_Boundary

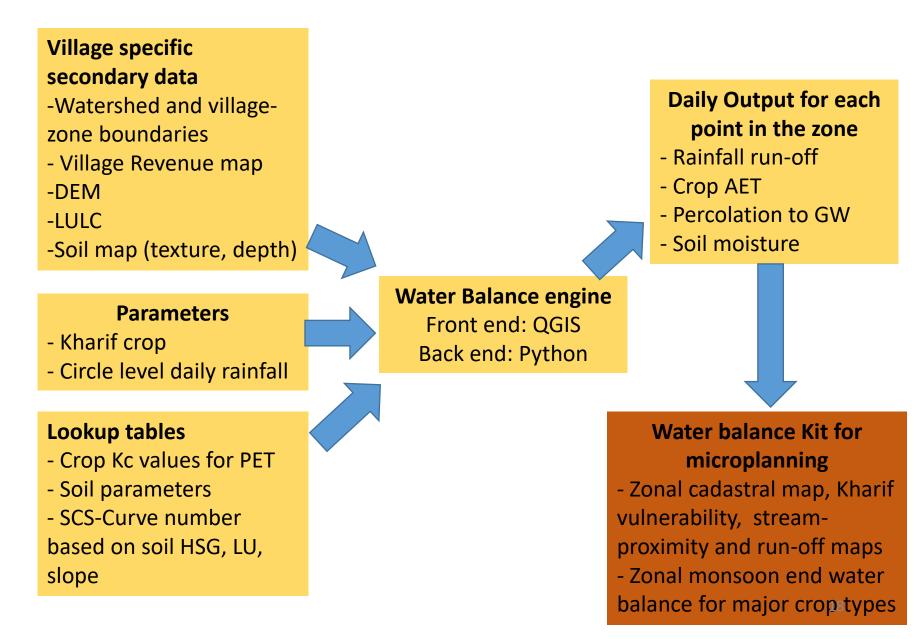
Buffer_100 Buffer_200

Output 3: Gondala Monsoon end balance


							Soil	
		PET	AET	Monsoon	GW		Moisture	Post
		Monsoo	Monsoon	Deficit(PE	Recharge in	Runoff in	Monsoon	Monsoon
Crop	Area	n End	End	T-AET)	Monsoon	Monsoon	end	PET
Soyabean		453.8	345.9	107.9	29.1	251.4	81.8	0.0
Cotton		449.5	361.7	87.8	29.1	273.1	44.6	304.6
Udid		276.0	194.9	81.0	81.7	339.2	92.1	0.0
Tur		415.5	338.2	77.2	32.3	286.9	51.0	185.1
Wasteland		517.9	258.8	68.9	53.7	328.6	67.6	0.0
Scrub		634.0	298.5	43.6	51.5	304.6	54.4	0.0
Forest		778.9	368.6	102.1	54.3	250.6	35.5	0.0
Harbhara		0.0	0.0	0.0	0.0	0.0	0.0	250.0
1								

Area for individual crops to come from field assessment

Outline


- 1. Climate resilience and need for water budget
- 2. Water balance: Technical details
- 3. Water budget exercise: Methodology adopted
- 4. Example

New water balance approach

- How does community benefit?
 - Identification and targeting of naturally vulnerable farmers
 - Better choice, siting and better utility from interventions
 - Better coverage of entire village, uniform benefits
 - Focus on assuring protective irrigation to improve yields
 - More informed rabi cultivation and guidance on sustainability
 - Better land use and overall water availability including DW

Methodology adopted – Pre-planning

Methodology adopted- WB during Microplanning

Field data collection/ validation in transect walk

- Collection of zonal cropping data
- Existing structures and capacity
- Human and animal population
- Validation of vulnerability zones
- Zonal Farmer surveys to capture yields and asset-poverty

WB Kit for microplanning

 Zonal monsoon end water balance for major crop types Water balance app on tablet

Output for Zone

-Monsoon balance: monsoon stress and available supply Monsoon security Index

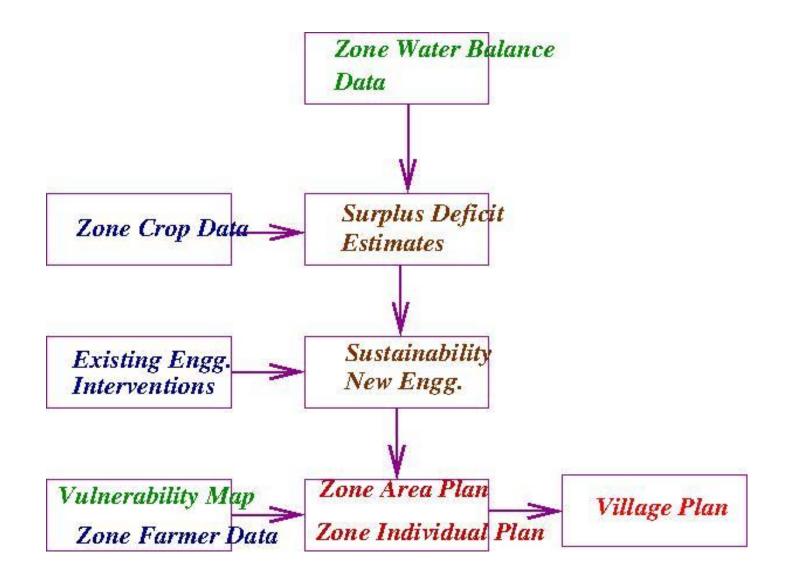
Post-monsoon
balance: irrigation
requirement vs. supply
of soil moisture and
GW
Post-monsoon security
index

Methodology adopted- Water budget and planning

Output for Zone -Monsoon balance: monsoon stress and available supply **Monsoon security Index** - Post-monsoon balance: irrigation requirement vs. supply of soil moisture and GW **Post-monsoon security** index - Additional run-off to be impounded

Water balance Kit for microplanning Zonal Kharif vulnerability maps Stream proximity map Run-off maps if required

How much

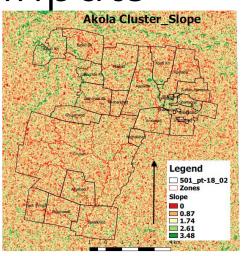

Advisory on how much additional water to impound (TCM) in each zone

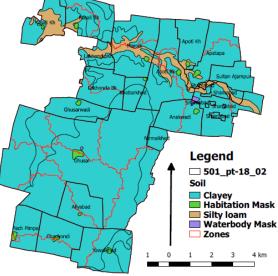
Advisory on which farmers to target when planning location of interventions

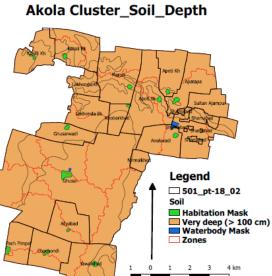
Testing different options and re-evaluating water budget as "what-if" scenarios

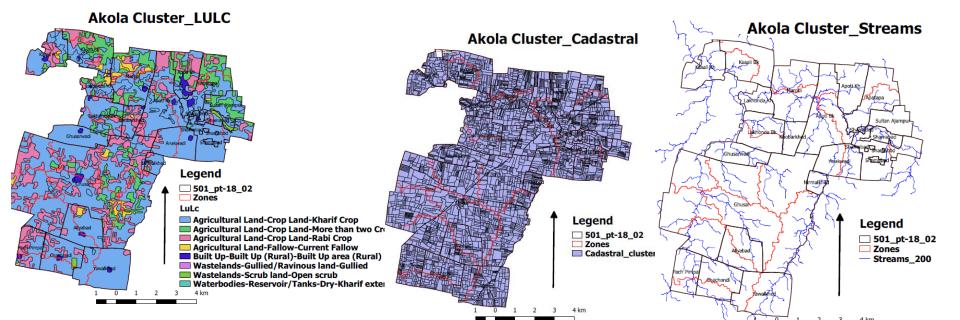
Where

Basic Outline of Water-balance enabled planning

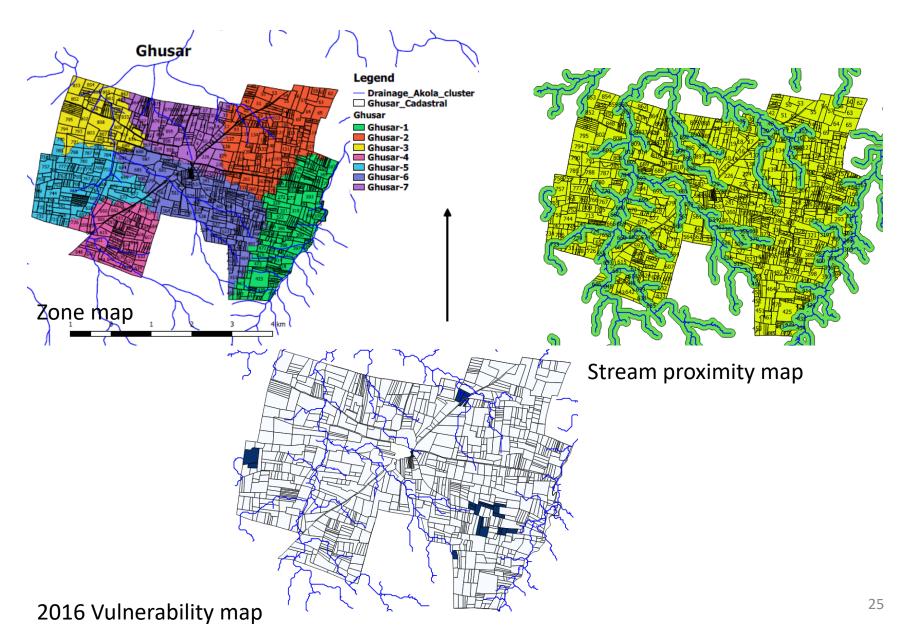

Outline


- 1. Climate resilience and need for water budget
- 2. Water balance: Technical details
- 3. Water budget exercise: Methodology adopted
- 4. Example


Towards an ideal village plan: example


- Broad village description: land use, crops, major sources of water, soil type, socio-economic situation
- Key water budget indicators and vulnerabilities and their general verification, good rainfall vs. bad rainfall scenarios
- Targets: seasonal indicators, cropping plan, storage, land use
- Strategy: Selection of interventions and overall justification
- Locations: maps, gat numbers
- Verification of targets through computation
- Financial outlay, KPI, community, vulnerability and sustainability report

Example – Ghusar (saline belt) village inputs



Ghusar: Microplanning kit

Ghusar Post monsoon computation (good year and bad year)

				GW			
	PET		Monsoon	Recharge			Post
2017: Rainfall	Monsoon	AET	Deficit(PET-	in	Runoff in	Soil Moisture	Monsoon
550mm	End	Monsoon End	AET)	Monsoon	Monsoon	Monsoon end	PET
Cotton	401.09	381.15	19.95	-	76.93	76.92	389.13
Moong	261.37	228.09	33.28	-	116.66	190.25	-
Tur	376.04	359.13	16.91	-	90.45	85.42	242.37
Soyabean	434.56	377.16	57.39	-	69.08	88.76	-
Harbhara	-	-	-	-	-	-	250.00
				GW			
	PET		Monsoon	Recharge			Post
2016: Rainfall	Monsoon	AET	Deficit(PET-	in	Runoff in	Soil Moisture	Monsoon
920mm	End	Monsoon End	AET)	Monsoon	Monsoon	Monsoon end	PET
Cotton	342.51	337.27	5.24	-	410.14	113.60	424.43
Udid	232.12	228.80	3.32	4.68	426.45	201.06	
Tur	314.97	295.34	19.63	-	437.19	126.45	288.90
Soyabean	403.78	346.98	56.80	-	402.37	111.65	18.62

Ghusar field inputs: cropping pattern and current structures

Сгор	Ghusar 1	Ghusar 2	Ghusar 3	Ghusar 4	Ghusar 5	Ghusar 6	Ghusar 7	Total village
Soybean	20	21.29	0	0	0	15.6	10.11	67
Jowar	14	6	8	7	4	20	13	72
Cotton	314.92	375	70	67.89	149	348.95	257	1582.76
Moong	52	90	182	177	220	70	26	817
Udid	5	4	5	5	7	12	6	44
Tur	55	65	35	30	27	60	20	292
Total	460.92	561.29	300	286.89	407	526.55	332.11	2874.76
Ag Area	461.92	561.29	300	297.41	407.73	526.55	332.11	2887.01
Non Ag	0.27	0	0	0	0	0	0	
Farm ponds	33	30	34	19	21	36	39	212

Ghusar Seasonal zonal water balance –good year (2016)

	2016 Seasonal Water Budget	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7
Monsoon	Monsoon Protective Irrigation Demand	40.4	45.5	23.6	28.0	26.2	26.2	30.4
balance	Existing Runoff Storage	36.2	32.9	37.3	20.9	23.1	39.5	42.8
(TCM)	Monsoon balance: current supply-demand	-4.1	-12.5	13.7	-7.1	-3.1	13.4	12.4
(ICM)	Monsoon Protective Irrigation Index	0.9	0.7	1.6	0.7	0.9	1.5	1.4
	Rabi Total Water Requirement	1608.4	1891.9	510.7	436.3	822.9	822.9	1261.1
	Drinking Water Requirement	0.0	0.0	0.0	0.0	0.0	110.0	0.0
Post-	Water Available from Soil Moisture	502.0	582.8	198.4	194.7	278.1	278.1	391.9
monsoon	Water Available from GW	4.8	4.8	4.8	4.8	4.8	4.8	4.8
balance	GW recharge available from current storage	36.2	32.9	37.3	20.9	23.1	39.5	42.8
(TCM)	Rabi balance : GW supply+ SM + structures-	-1065.3	-1271.3	-270.1	-215.9	-517.0	-610.5	-821.5
	Rabi demand - DW	-1005.5	-12/1.3	-270.1	-213.9	-317.0	-010.5	-021.3
	Post-monsoon Protective Irrigation Index	0.3	0.3	0.5	0.5	0.4	0.3	0.3
Design	Water Available from Runoff (80%)	1675.2	1907.0	801.3	785.5	1032.6	1032.6	1362.4
(TCM)	Additional water available for impounding	1602.7	1841.1	726.7	743.8	986.4	953.5	1276.8

Ghusar Seasonal zonal water balance –bad year (2017)

	2017 Seasonal Water Budget	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7
	Monsoon Protective Irrigation Demand	116.4	130.0	64.1	62.9	187.6	78.5	98.9
Monsoon	Existing Runoff Storage	36.2	32.9	37.3	20.9	23.1	39.5	42.8
balance (TCM)	Monsoon balance: current supply-demand	-80.1	-97.1	-26.8	-42.0	-164.5	-39.0	-56.0
	Monsoon Protective Irrigation Index	0.31	0.25	0.58	0.33	0.12	0.50	0.43
	Rabi Total Water Requirement	1471.6	1729.3	469.7	449.8	695.9	757.7	1161.0
	Drinking Water Requirement	0.0	0.0	0.0	0.0	0.0	110.0	0.0
Post-	Water Available from Soil Moisture	356.8	411.5	151.2	145.4	187.9	205.2	282.3
monsoon	Water Available from GW	0.0	0.0	0.0	0.0	0.0	0.0	0.0
balance	GW recharge available from current storage	36.2	32.9	37.3	20.9	23.1	39.5	42.8
(TCM)	Rabi balance : GW supply+ SM + structures- Rabi demand - DW	-1078.6	-1284.9	-281.2	-283.5	-485.0	-623.1	-836.0
	Post-monsoon Protective Irrigation Index	0.27	0.26	0.40	0.37	0.30	0.28	0.28
Design	Water Available from Runoff (80%)	349.2	393.4	184.0	179.1	232.5	226.8	288.2
(TCM)	Additional water available for impounding	276.7	327.5	109.3	137.4	186.4	147.7	202.5

- Rabi sowing for bad rainfall year should be reduced
- Current demand will not impound all available runoff even in a bad rainfall year (1400 TCM available)²⁹

Ghusar – Planning guidance from WB

- No scope for area-treatment
 - Saline GW, clayey soil
- Large scope for inlet-outlet type farmponds
 - Factors: Clayey soil, saline GW, large run-off, need to drain fields from run-off during monsoon, large landholding farmers
 - Large demand from farmers for farm ponds but siltation is an issue
 - Where? A 30x30x3 (or 2TCM) farm pond can be filled from run-off on 2 ha land (run-off is close to 100mm even in bad rainfall year)
 - How many: more than 500; constrained only by demand and budget
- Drain line
 - Good scope for widening/ deepening streams with gabion structures for soil conservation
 - Desilting of village pond and farm ponds
 - CNBs, MNBs

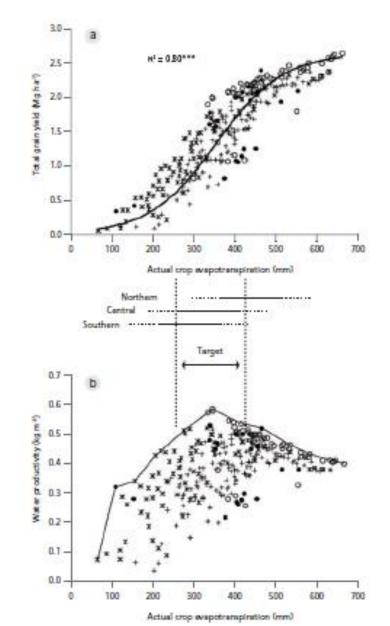
Village Demand	No.
Orchards (lime,	11
mango, peru)	ha
Farm ponds w/o plastic w/ plastic	212 253
MNBs	10
CNBs	10
Gabion structures	10
Wells	50
Stream deepening/ widening	3 km

Ghusar cluster: Farmer yields surveys

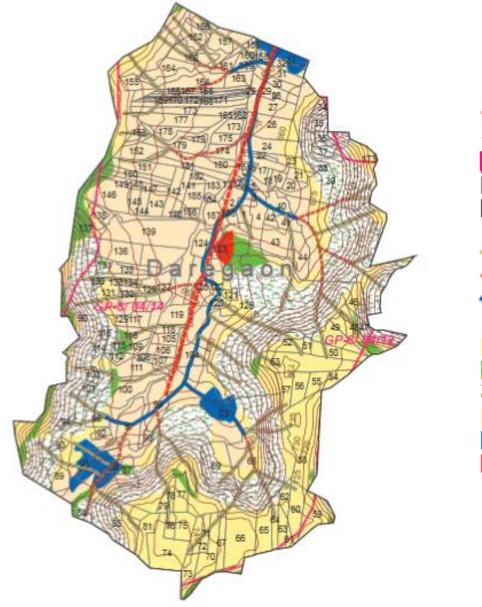
Сгор	Farmer No	Unirrigated	Irrigated
Cotton (Ajit 155)	1. w/FP	7Q/acre (in 2017)	8Q/acre (one irr in 2016)
	2. w/bore	3-5Q	8Q (July 2017 protective irr)
	3.		12Q (1 kharif protective + 1 in Nov 2017)
Harbhara (Vijaya)	1. w/ FP	5Q (2016)	6Q (one irrigation)
	2.	2-3Q	6-7Q (post mung; one irr Oct 2017)
	3. (w/ bore)	5-6Q (after mung, no irrigation)	(after soya) Pre-water before sowing + 2 more in Nov and Dec: 6-7Q/acre
(Jackie)	4.	6-7Q (post mung)	10Q (twice irrigated post mung)
Soyabean	1.	Crop failed (2017)	
	2. (w/bore)		5Q (1 in Oct 2017) full yield ~12Q w/2 more water
	3.	1.5Q (2017)	
Tur	1.	1.5Q/acre	5Q

2.1 TCM FP allows 2 water to 2 ha harbhara => ~Rs 20k/ yr

Improvement over existing models


- Seasonal model with special attention to Kharif protective irrigation planning
- Addresses differences within a village spatially and ensures good coverage
 - Creation of vulnerability maps
 - Zone as a unit of planning
- Takes soil moisture and soil type into consideration
- Easy-to-use format requiring some key field data as input
- Coupling with advisory on intervention planning and cropping pattern
 - "what-if" scenarios
- Areas for further improvement (part B of this presentation)

Thanks


More crop per drop: rationing water

- When available water is limited, most crop per drop can be attained at lower AETs even though this leads to lower yields
- Seen in farmer decisions (e.g. harbhara vs cotton, kharif vs. long kharif crop)

Ref: FAO Paper 66 on crop yield response to water

Daregaon potential treatment plan

